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Abstract: Propagation of weak shock waves and
strongly nonlinear acoustic waves of the lowest or-
der nonplanar mode in a circular duct filled with
an ideal gas is numerically investigated by using a
high resolution upwind TVD scheme. The result
shows that, when the nonlinearity is moderately
strong and the source frequency is moderately high,
the initial sinusoidal wave profile can evolve into
shocks, although according to the weakly nonlinear
theory a nonlinear Schrédinger equation determines
the wave motion in a steady state, where a shock
wave does not appear. Furthermore, strongly non-
linear waves can induce vortex-ring-like streaming
jet (mean mass flow), by which the density of the
gas in the neighborhood of the vortex core decreases
more and more as time goes by. The resulting low-
density region is not only of high vorticity but also
of high entropy and high temperature.
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1. Introduction

We shall consider the propagation of strongly non-
linear waves of the lowest order nonplanar mode
in a semi-infinite circular duct filled with an ideal
gas. It is assumed that the wave is radiated by
a sinusoidal vibration of sound source at one end
of the duct, whose frequency is comparable with
but larger than the linear cutoff frequency (see
Fig. 1). The nonlinear phenomena of nonplanar
waves in the circular duct have been analyzed by
many authors: Keller and Millman (1971) have ob-
tained a nonlinear wavenumber shift; Nayfeh (1975)
has derived a nonlinear Schrédinger equation for
a complex amplitude of quasi-monochromatic wave
train; Nozaki and Taniuti (1986) have shown a soli-
ton solution for the nonlinear Schrédinger equa-
tion; Larraza and Coleman (1996) have discussed
the possibility of AM-FM conversion in a quasi-
monochromatic wave train. Aranha et al. (1982)
have numerically examined nonlinear wave behavior
near and below cutoff. Those analyses, however, are

confined in a weakly nonlinear regime, i.e., they are
imposed the restriction that an acoustic Mach num-
ber M = aw/cp should be sufficiently small com-
pared with unity, where a is the maximym'ampli—
tude of harmonic oscillation of the source, w is an
angular frequency of the oscillation, and cg is the
speed of sound in an initial undisturbed gas. Ac-
cording to the weakly nonlinear theory, shock waves
are not produced in a steady state because of dis-
persion.

o,

r*
Sound ’," “ )
Source, ¥ Nonlinear Wave
— _l_l'__*z /\ x’!f —

Figure 1. Schematic of the model. z* is the distance
along the axis of the duct from an initial location of
sound source (cf. Eq. 10) and r* is the distance from
the axis. The sound source is a vibrating surface of
angular frequency w; the amplitude of its vibration is
symmetric around the axis and varies with r* as the
Bessel function of zeroth order.

Recently, some problems of shock waves and
strongly nonlinear acoustic waves have numerically
been investigated by Yano and Inoue (1996a) and
Yano and Inoue (1996b). They have pointed out
several features forming striking contrasts to the
well-known weakly nonlinear problems of M <« 1.
In this paper, we shall numerically examine the
strongly nonlinear wave phenomenon in the circular
duct, characterized by the conditions
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Re = ————(7 +51)c0a > 1, (2)
Q<= Rw _ 0(1), (3)
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where 7y is the ratio of specific heats for the ideal gas,
¢ is the diffusivity of sound, R is the radius of the
circular duct, and €. is a normalized linear cutoff
frequency of the lowest order nonplanar mode. The
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first condition M = O(1) means that the nonlin-
ear effect is so strong that the initial smooth profile
of the radiated sound may rapidly be transformed
into the shock wave in the near field. The second
condition Re > 1 means that we can regard the
shock as a discontinuity and may ignore the dissi-
pation cffect everywhere except for the shock front
(Re is referred to as an acoustic Reynolds number).
The third condition signifies that the frequency at
the source is comparable with but larger than the
linear cutoff frequency.

Qur purpose is to clarify the strongly nonlinear
effect on the wave phenomenon characterized by
Egs. (1)-(3), by solving the system of axisymmetric
Euler equations with a high-resolution upwind TVD
finite difference scheme (Chakravarthy (1987)).

2. Formulation of the problem

We shall formulate the problem mathematically. To
do so, the following nondimensional variables are
introduced (see Fig. 1):

* xrw rw
t=wt", x= , r= R
Cp Cp
* * * *
u v
U= —, V= —, p:p_ p:~—p2,(4)
co Co Po PoCh

where z* is the distance along the axis of the circu-
lar duct from an initial location of sound source (see
Eq. 10), v* is the distance from the axis, u* and v*
are respectively z* and r* components of the fluid
velocity, p* is the density of the gas, and p* is the
pressure (pg is an initial undisturbed density).

The governing equations are the Euler equations
for axisymmetric flow,

% %’;ﬁ %ﬁh’;—”:o, (5)
o B0 o
% . 3(e;p)u N a(e;p)v N (etp)v ~0. (9

where e = p(u® + v%)/2 + p/(y — 1) is a nondi-
mensionalized total energy of the ideal gas per unit
volume. Shock waves and contact surfaces can be
represented as discontinuities in a weak solution of
system (5)—(8). Condition (2) is responsible for the
use of the Euler equations, as long as the boundary
layer on the wall is sufficiently thin compared with
a typical wavelength; we assume this and ignore the
boundary layer (see also section 4.3.).

Since we want to study the lowest order nonpla-
nar mode, we shall suppose that the boundary con-
dition on the sound source is

Oh oh oh

§+u5;+v<—97—0,

on a vibrating surface prescribed by

(9)

r

h(z,rt) =z — H(t) MJ, (jl 5

)(cost -1)=0,

(10)
where H(-) is the Heaviside unit step function,
Jo(+) is the Bessel function of zeroth order, and
j1 = 3.8317... denotes the smallest positive zero of
the Bessel function of first order. Note that Q de-
fined in Eq. (3) also has the meaning of a nondimen-
sionalized radius of the duct and that €, is equal
to j1. The boundary condition on the side wall and
a symmetry condition on the axis are

v=0 on y=0 and y=0. (11)
The initial conditions at t = 0 are
u=v=0, p=1, p=1/y. (12)

3. Linear and weakly nonlinear theory
In the limit of M — 0, Egs. (9) and (10) reduce to
r
Q

Then, the excited wave motion can be regarded as a
linear one, and it is described by a nondimensional
velocity potential ®:

u=—H(t)MJ0(j1 )sint at =0 (13)

T

& =—H(t -z %JO(J&Q) {cos(t—nx)
Jr/oosin(t—*r)Jo(jﬁ1 T2—x2)dr], (14)

where

k= 1= (/). (15)
Equation (15) is a normalized linear dispersion re-
lation for the lowest order nonplanar mode. The
scalar potential ® gives u = 0%/8z, v = 0®/0r,
and p = (1/7) — 0@ /8t +O(M?). The integral term
in Eq. (14) denotes the initial transient effect which
decays as t~1/2. After the transient effect dies out,
the wave motion reaches a steady state. The har-
monic wave in the steady state has a normalized
phase velocity k=1 and group velocity &.

For the case that M is sufficiently small compared
with unity but finite, a weakly nonlinear theory has
been established. According to the theory, the weak
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nonlinear effect and dispersion effect balance in the
far field in the steady state, and the wave motion
there is governed by a nonlinear Schrédinger equa-
tion (Nayfeh (1975))

2
ia—w+aa—w+ﬁiqﬂ|wzo,

Oz 062 (16)

where i = /-1, ¥ is a complex magnitude of quasi-
monochromatic wave train, f = ¢t — (1/k)z is a re-
tarded time (time on the coordinate moving with
the group velocity k), a = —(1 — k?)/(2x%), and 3
is a constant depending upon M and 2, which has
numerically been proved positive for all Q (> Q)
and M (> 0). Since both o and —f are negative,
monochromatic waves are stable and Eq. (16) has a
soliton solution which is an envelope hole of quasi-
monochromatic wave train. The theory claims that
shock waves cannot form in the case of harmonic
excitation at the source.

We shall remark that, in rectangular (or two-
dimensional) ducts, the harmonic excitation at the
source leads to the shock formation in the weakly
nonlinear regime (Ginsberg and Miao (1986)), al-
though the corresponding linear wave motion
should satisfy a dispersion relation very similar to
Eq. (15). The cause of the difference between cir-
cular and rectangular ducts may be attributed to
the fact that all higher harmonics resonate in uni-
son in rectangular ducts but not in circular ducts.
However, an uncertainty still remains for the crite-
rion of shock formation, because shock waves can
be formed in a circular duct for not so large M, as
we shall see in the next section.

4. Strongly nonlinear waves

We shall examine the strongly nonlinear problem
of M = O(1), Re - o0, and Q, < = O(1). To
this end, the initial and boundary value problem,
Eqs. (5)-(11), is numerically solved by using a high
resolution TVD scheme (Chakravarthy (1987)). In
the following, we shall demonstrate typical numer-
ical results. In all computations, both Az and Ar
are set at 2r/160 and At < Az/5. The ratio of
specific heats -y is fixed at 1.4 (air).

4.1. Formation and propagation of shock
waves

Owing to the strongly nonlinear effect, the profile
of the wave is rapidly distorted as the wave prop-
agates. As shown in Fig. 2, in the case of mod-
erately large {2, the waveform distortion leads to
the formation of shock waves with curved fronts in
the near field. We shall emphasize that the shock
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Figure 2. Wave profile of the normalized gas den-
sity (p — 1)/M for M = 0.1 and & = 4n at £ = 807.
The abscissa and ordinate are the distances from the
source and the axis, respectively, which are normalized
by 2mco/w. a: 0 < z/2n < 11, b:"10 < z/2m < 21.
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Figure 3. Wave profile of the normalized density. M =
0.1 and Q = 87/5 at t = 80n. The abscissa and ordinate
are the same as those in Fig. 2.

fronts propagate obliquely in the duct, repeatedly
reflected from the wall. In Fig. 2, three shock fronts
intersect at a shock triple point near the axis of
the duct (see also Fig. 4a). Further calculation
shows that the distance between the triple point
and the axis decreases with decrease in 2. When
Q is smaller than 27, the shock intersection occurs
on the axis, i.e., the triple point does not emerge.
For 2 > 2w, in the vicinity of the axis, the wave
behaves as a sawtooth-like plane wave (see Fig. 2b
and also Yano and Inoue (1996¢)).
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In Fig. 3, we shall present a wave profile of smaller
2, where the shock triple points are not definitely
observed (see also Fig. 4b). In this case, as shown
in Fig. 3b, shock waves disappear in the far field
although the waveform is still distorted there. An-
other feature in smaller ) case is that, as shown
in Fig. 3, the wave profile on the axis has spiky
crests, because the focusing effect (or the interfer-
ence of the waves reflected from the side wall) be-
comes strong with decrease in ().

4.2. Vorticity generation and its accumula-
tion

In general, even if the flow field is initially irrota-
tional, vorticity can be produced behind a curved
shock front or shock of non-uniform strength along
its front, as well as at a shock intersection point
(Landau and Lifshitz (1987)). In the present prob-
lem, the flow field can be changed from irrota-
tional one to rotational one after shock waves are
formed. However, vorticity production behind a
curved shock front is very weak compared with that
at a shock triple point.

0 2 4 6 10
b 8

Figure 4. Gas density contour. a: M = 0.1 and 2 =
4 at t = 80w, b: M = 0.1 and Q@ = 8n/5 at ¢t =
80m. The abscissa and ordinate are the same as those
in Fig. 2.

In the case of moderately large €2, the continuous
harmonic excitation at the source results in the gen-
eration of a sequence of shock triple points near the
axis (see Fig. 2 and Fig. 4a). At the triple points,
vorticity is strongly produced and this forms a con-
tact surface (vortex sheet) as in the Mach reflection
in supersonic flow. However, unlike the supersonic
flow problem, many shock triple points are gener-
ated and they trace almost the same path, because
the source motion is periodic. Consequently, vor-
ticity is accumulated along the trajectory of triple
points. Thus, it develops into a moderately strong
cylindrical vortex sheet coaxial with the duct (see
Fig. 4a and also Fig. 5).

On the other hand, in the lower frequency case,
as in the regular shock reflection in supersonic flow,

no shock triple points appear and shock fronts may
be regarded as planes (see Fig. 4b). The flow field
continues to be irrotational even after many shock
waves are formed.

In Fig. 5, we shall show the evolution of the mag-
nitude of a time-averaged vorticity defined as

— 1 /[t ov Ou
Q(.T,T,t) = %/t (a—z' = 5;) dt.

—-27

(17)

Clearly, the strength of vorticity on the vortex sheet
increases more and more as time goes by, while vor-
ticity elsewhere remains very weak at least until
t = 80m. Note that a region from the sound source
to the shock formation distance is irrotational.
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Figure 5. Time-averaged vorticity contour. M = 0.1
and Q = 47 at ¢t = 80w. The abscissa and ordinate are
the same as those in Fig. 2. a: t = 40w, b: t = 607, c:
t = 807. In c, the magnitude of time-averaged vorticity
on the vortex sheet is about 0.02.

4.3. Evolution of vortex-ring-like streaming
and jet

Tt is obvious that linear acoustic waves excited har-
monically at the source are not accompanied by a
substantial current of mass, because a time average
of mass flux at any point vanishes. In a nonlinear
wave field, however, even though it is excited har-
monically, the substantial current can be induced.
This is referred to as acoustic streaming.

In this paper, we shall define the streaming ve-
locity by a time-averaged mass flux density vector,

Mg (z,r,t)) 1 /t P 4t
me(z,7t) ) 27 Jy_or \ pV )
In Fig. 6, we demonstrate how streaming evolves. It
can be seen from the figure that a vortex-ring-like
flow pattern is established in the near field. On and

near the axis, the steaming motion is jet like and its
velocity grows more and more as time goes by. The

(18)
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vortex sheet shown in Fig. 5 may be interpreted as
the shear layer which develops on the boundary of
streaming jet.
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Figure 6. Time-averaged mass flux density vector for
the case of M = 0.1 and Q = 4n. The abscissa and
ordinate are the same as those in Fig. 2. a: ¢t = 407, b:
t = 60w, c: t = 80m. An arrow of length M? is shown
on the top of each figure for reference. The maximum
magnitude of time-average mass flux density at ¢t = 80~
is 0.054, attained at (z/2m,r/27) = (2.9,0).

It may here be noted that in reality classical
acoustic streaming may also be induced by a ro-
tational flow in the boundary layer on the wall,
which is not taken into account in the present anal-
ysis (see, e.g., a classical work by Rayleigh (1945)).
The actual streaming pattern may be the super-
position of classical streaming and the vortex-ring-
like streaming jet. However, the magnitude of clas-
sical streaming is of O(M?) and it does not have
accumulative property, namely, it is a steady flow.
Therefore, with a lapse of time, the vortex-ring-like
streaming jet becomes the dominant streaming mo-
tion, at least on and near the axis.

Figure 7 shows the temporal evolution of stream-
ing jet on the axis. It seems that the maximum
velocity on the axis increases with time to some
limiting value. A similar streaming motion has re-
cently been studied in a one-dimensional weakly
nonlinear problem by Yano and Inoue (1996¢) (see
also Yano (1996)), where it has analytically been
shown that a sawtooth-like plane wave causes a
nonzero quasi-steady mean mass flow in the posi-
tive z direction. In the present problem, the wave
profile in the vicinity of the axis can be regarded
as a sawtooth-like plane wave, as shown in Figs. 2
and 4a. The result in the previous one-dimensional

problem may therefore be used for accounting for
the behavior of streaming jet: In a wave cycle of the
sawtooth-like profile, the area of compression phase
is larger than that of rarefaction phase because a
shock front propagates with a speed slightly larger
than co; hence the wave cycle carries an amount of
gas in the positive z direction.

0.06

0.04+

Figure 7. Distribution of velocity of streaming jet on
the axis, mg(z,0,t), for M = 0.1 and Q@ = 4n. The
abscissa is z/27. Bold solid curye is at ¢ = 80, bold
dashed curve t = 607, thin solid curve ¢ = 407, and
thin dashed curve t = 207.

4.4. Formation of low-density region

In the previous one-dimensional weakly nonlinear
analysis (Yano and Inoue (1996¢)), it is a natu-
ral consequence that the uni-directional current of
mass should cause the decrease in density in the gas.
Even in the present problem, the density is gradu-
ally decreased in a region near the vortex core as
shown in Fig. 8, where the distribution of a time-
averaged density of the gas defined by

1 t
p(z,rt) = 2—/
t

™ —27

p dt, (19)

is presented.

Again, the result of Yano and Inoue (1996¢) is
available for explaining the appearance of the low-
density region in this multi-dimensional problem.
According to Yano and Inoue (1996¢), two effects
at each shock front of sawtooth-like wave, i.e., en-
tropy production and radiation of reflected acous-
tic wave of very small amplitude, reduce the den-
sity immediately behind the shock front by an
amount of gas carried by the shock front (see also
Yano (1996)). The effect of entropy is eight times
as large as the effect of reflected acoustic wave (in
normalized quantities in the air). At every time a
shock passes a point in the neighborhood of the axis,
the entropy at the point increases, and hence the
density decreases there. As a result, a high-entropy
region, i.e., low-density region, is built up in a lane
of the sawtooth-like plane wave. Since the entropy
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only is convected with a fluid particle, which is os-
cillating around an equilibrium point in the leading
order of approximation, vortex-ring-like streaming
cannot distribute the localized entropy. Therefore,
the local depression of time-averaged density field
cannot be filled up.
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Figure 8. Evolution of the time-averaged density p for
M = 0.1 and Q = 47. The abscissa and ordinate are
the same as those in Fig. 2. a: ¢t = 407, b: t = 607, c:
t = 807. In c, the lowest time-averaged density is 0.975
at (z/2m,r/27) = (2.9,0).
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Figure 9. Distribution of entropy increment In(yp/p™)
for the case of M = 0.1 and Q2 = 47 at t = 80w. The
abscissa and ordinate are the same as those in Fig. 2.
The maximum entropy increment at ¢ = 807 is 0.031 at
(z/2m,r/2m) = (3,0).

From Figs. 5 and 8, one can see that the low-
density region includes the high-vorticity region.
Furthermore, the region of low density is that of
high entropy as shown in Fig. 9. It also is a region
of high (time-averaged) temperature.

5. Conclusions

We have numerically investigated the propagation
process of weak shock waves and strongly nonlin-
ear acoustic waves of nonplanar mode in a circular
duct filled with an ideal gas. It has been shown
that shock waves can be formed in the case of
moderately high frequency, although in the low-
frequency case shock waves disappear in the far
field. In the moderately high frequency case, a
sequence of shock triple points is generated and
vorticity is accumulated with time on the vortex
sheet. The vortex-ring-like streaming jet is excited

on and near the axis. The jet decrease the density
in the vicinity of the vortex core more and more
as times goes by, and thus the low-density region
appears. Such streaming with rarefaction effect
has also been found in Yano and Inoue (1996a) and
Yano and Inoue (1996b). Finally, we shall remark
that streaming jet may become turbulent in the far
field as suggested by Lighthill (1978) (cf. Fig. 7).
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